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Review
Glossary

Anterograde interference: the phenomenon whereby acquisition of a new skill

is impeded by the prior acquisition of a different skill.

Brain–computer interface (BCI): a system which records neural activity,

decodes that activity to extract information about a subject’s intended actions

and uses that decoded information to control a remote effector (see below).

Other names for this technology include: brain-controlled, brain–machine or

neural interface, and neural or neuromotor prosthesis.

Effector: the physical object controlled by the brain to achieve desired goals

and actions. In overt arm motor-control, it is the arm itself. In the context of BCI

control, it is usually a tool such as a computer cursor, television remote,

wheelchair or robotic prosthetic device.

Feed-forward: in arm motor-control, feed-forward control refers to the

predictive neural processes that generate the control signals expected to drive

the arm to its desired goal state, such as a reaching movement to a target.

Feed-forward control will produce errors unless it has perfect knowledge of

how the arm will respond to a motor command across all conditions.

Feedback: in arm motor-control, visual or proprioceptive sensory inputs

provide signals (feedback) about the response of the arm (current state) to the

outgoing motor command. A feedback control loop is established when the

feedback signal is used to modify the outgoing motor command to influence

the continuing evolution of the movement or to permit adaptive changes to

future motor commands in response to sensed errors.

Internal model: as used here, the term describes a neural representation of the

properties of a physical system or a physical relationship. Such properties

could often be described by one or more mathematical equations. Internal

model refers to the implementation of the computations/transformations

implied by such equations by neural populations. In limb motor-control,

internal models refer to neural networks which implement various aspects of

the computations that describe the properties of the arm and its interactions

with the environment. Such internal models can be used to help transform

desired goals into commands for action or to transform sensory information

and efference copies of motor commands into current-state estimates of actual

behavior and future-state predictions of how the arm will respond to a motor

command.

Extrinsic motor parameter: parameters that describe the spatial properties of a

movement, such as the spatial location of targets and the direction or velocity

of hand movement through space.

Intrinsic motor parameter: parameters that describe a movement in terms

centered on different body parts, such as joint angles and joint rotations or

muscle lengths and muscle length changes.

Retrograde interference: the phenomenon whereby the acquisition of a new

skill interferes with the retention or recall of a previously learned skill.

Viscous–curl field: an external force field whose magnitude is proportional to

movement velocity (viscous force) and is applied in the direction perpendicular
Brain–computer interfaces (BCIs) extract signals from
neural activity to control remote devices ranging from
computer cursors to limb-like robots. They show great
potential to help patients with severe motor deficits
perform everyday tasks without the constant assistance
of caregivers. Understanding the neural mechanisms by
which subjects use BCI systems could lead to improved
designs and provide unique insights into normal motor
control and skill acquisition. However, reports vary con-
siderably about how much training is required to use a
BCI system, the degree to which performance improves
with practice and the underlying neural mechanisms.
This review examines these diverse findings, their po-
tential relationship with motor learning during overt arm
movements, and other outstanding questions concern-
ing the volitional control of BCI systems.

The BCI: transforming volition into action via
assistive technology
The remarkable ease with which we interact with the
world with our arms and hands is lost in patients with
severe motor deficits. BCI technology (Glossary) shows
great potential to help patients perform everyday tasks,
such as feeding and grooming themselves or using a com-
puter and entertainment devices, by recording their brain
activity to extract signals about their motor intentions.
These signals are converted into actions of remote devices
(effectors) ranging from computer cursors to anthropomor-
phic robots [1–7] and even into contractions of the subject’s
own muscles by electrical stimulation [5,8,9].

The ideal BCI system should allow subjects to control
effectors without extensive training by simply thinking
about what they want the effector to do. In human subjects,
such mental efforts activate neural circuits normally in-
volved in overt motor control. For instance, cerebral corti-
cal motor areas become active when paralyzed humans are
asked to try to move body parts or to imagine that they are
moving an effector [1–7,10–16]. The neural activity evoked
during those covert volitional motor efforts has several
properties in common with that recorded in able-bodied
subjects during overt arm movements [14–16]. However,
asking subjects to engage in introspectivemotor imagery is
not as demanding as requiring them to impose efficient
BCI control over the motions of an actual physical effector.
This is especially true if the effector does not follow their
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motor intentions as faithfully in the real world as it likely
does in their mental imagery.

Most BCI development has been accomplished using
able-bodied animals such as monkeys and rats [1–8,17–21]
that cannot respond to verbal instructions to generate
movement-related brain activity. Instead, they are typical-
ly first trained in behavioral tasks to control the motions of
effectors by making free limb movements or operating a
joystick or similar tool. Only then is the task-related brain
to the direction of movement (curl).
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activity appropriated by the BCI to directly control effector
motions, bypassing the intermediary of the arm and tool.

Reports of the time required for subjects to acquire BCI
control range from minutes to weeks [1–21]. Furthermore,
much like an infant’s arm movements, the BCI-mediated
effector motions initially achieved by subjects are usually
slow, often clumsy and sometimes unsuccessful. Many
studies report improvements in BCI control with practice
[1–8,10–13,17–21], suggesting that it is a skill that can be
acquired in the same way as overt motor skills. However,
the improvement is often poorly documented, and no sub-
ject to date has achieved the same precision and speed of
effector control as during normal overt arm movements.
Finally, motor skill acquisition is widely assumed to re-
quire changes in neural activity. However, the activity
changes that have been reported after subjects begin to
use a BCI system are diverse and often difficult to inter-
pret. The diversity of reports on these issues in part reflects
whether the primary objectives of each study concern
technical development of BCI systems or the investigation
of the brain mechanisms underlying BCI use. We will
examine these and other issues related to the neural
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mechanisms of BCI control in this review. To provide some
context, however, we will first provide an overview of some
basic concepts in relation to the brain mechanisms under-
lying voluntary arm movements. For practical technical
reasons, most BCI systems extract brain signals from the
cerebral cortex. Therefore we will focus on cerebral cortical
mechanisms of overt motor control, while acknowledging
that subcortical circuits also make essential contributions.

Voluntary control and adaptation of overt arm
movements
To make a voluntary movement, the motor system must
convert a desired goal (e.g. drink some coffee) into a plan of
action (reach to your coffee cup) and ultimately into the
spinal motoneuron activity that produces the required
muscle contractions. This involves coupled open-loop
feed-forward and closed-loop feedback control mechan-
isms. Feed-forward processes performed by neurons dis-
tributed throughout the supraspinal motor system convert
the goal into a motor command that is further transformed
by spinal cord circuits into muscle activity. Proprioceptive
and visual feedback closes the control loop by informing the
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motor system about the physical consequences of themotor
command (Figure 1a).

The neural mechanisms that convert a goal into a move-
ment are often described as a sequence of sensorimotor
transformations from sensory inputs to motor outputs
(Figure 1b) [22–26]. Two putative transformations are of
interest here – the conversion of visual input about a target
location into the desired reach trajectory, and the subsequent
transformation of the desired trajectory into motor com-
mands that evoke the required muscle activity. According
to an influential hypothesis in the field, the motor system
implements those transformations via adaptive internal
models (IMs) – neural representations of the physical prop-
erties of the arm and its interactions with the world. Those
propertiesdeterminethecomputationsrequired to transform
desired goals into motor commands and predict the physical
consequences of those commands [27–30] (Figure 1b).

The transformation implemented by an IM in turn deter-
mines the response properties of its constituent neurons,
including the combinations of sensory and motor-related
signals to which they respond and how they discharge
during movement [30–34]. Each neuron usually displays
a particular activation pattern (e.g. Gaussian, cosine, pla-
nar) over a broad but limited range of different extrinsic or
intrinsic motor parameters such as movement direction,
arm posture, joint angles, output forces or muscle activity
[22,25,26]. Motor adaptation would involve synaptic input
weight changes onto neurons involved in one or more trans-
formations, resulting in changes in their task-related acti-
vation patterns and thus in the transformations that they
implement (Box 1). This suggests that the response proper-
ties of the neurons in the IMs undergoing adaptive changes
determine how the motor system learns new skills. The
mechanisms underlying motor skill learning in turn deter-
mine how neural activation patterns change [30,35–39].

Behavioral studies of motor adaptation

One widely studied type of motor learning is adaptation of
reaching movements to a change in the relationship be-
Box 1. The origin and functional implications of neural activation

A fundamental issue for understanding the functional role of a given

neuron is the causal origin of its observed activation pattern in a given

task and the implications of changes in that pattern during adaptation

[22–26,102–104,107,125].

From one perspective, each neuron receives synaptic inputs

related to certain desired properties of a movement, such as its

direction, speed or forces. Its activation pattern in a given task

reflects the range of quantitative values of those parameters in

those conditions. Changes in activation patterns across conditions

reflect only task-dependent changes in the values of the parameters

that modulate the neuron’s discharge, rather than a fundamental

change in the relationship of that neuron’s activity to motor

output.

Muscles behave in this way. Muscles generate forces and torques

across joints. Each muscle’s anatomy and biomechanical properties

determine the relationship between its contractile activity and output

forces at different muscle lengths or joint angles. As a result, an arm

muscle’s contractile activity level varies with the direction of reaching

movements made in a given arm posture. This directionally-tuned

activation pattern changes when the arm is in different postures or

confronted with different external forces. Those changes in activation

patterns only reflect changes in how the motor system activates the

muscle in different task conditions to produce the required output
tween desired goals and required motor commands. For
instance, when an external force field repeatedly deviates
the arm from its intended trajectory, the motor system
learns to generate new patterns of forces and muscle
activity to restore the originally-intended movement
[29,35–38] (Figure 2a–f). By contrast, when a visuomotor
dissociation (e.g. prisms, visual rotations) alters the rela-
tionship between visual input and arm movements, the
motor system learns to make a different movement in
response to a given visual input without altering the forces
and muscle activity that cause that movement [39–43].
Force-field and visuomotor adaptation presumably require
changes in different sensorimotor mappings in different
IMs, but share several key properties.

First, in both situations the motor system uses sensory
feedback about errors arising in a given trial to make
incremental changes to the appropriate sensorimotor map-
ping to permit predictive feed-forward compensation for
the conditions expected in the next trial [35,36,44]. This
results in a learning curve of gradual improvement across
many trials whose time-course can reflect multiple pro-
cesses with different rates of learning and forgetting
[45,46]. Adaptation can also be influenced by such factors
as the degree of predictability of task conditions and
whether the motor system assigns credit for the errors
to a change in the world, a change in the properties of the
limb, or incorrect calculation of the motor command [45–

53].
Second, skills learned in one reach direction or arm

posture can generalize (i.e. transfer) to untrained direc-
tions or postures, but the extent of generalization
decreases as the directions and postures become increas-
ingly different from those in which the skill was learned
[29,35,36,41,42,54–57]. The observed generalization pat-
terns resemble the approximately sinusoidal directional
and planar postural activation patterns of many motor
cortical neurons, consistent with theoretical predictions
that generalization patterns reflect the properties of the
neurons that are adapting [22–26,30,35,36,41,42,54–57].
patterns and their changes during adaptation

forces, not changes in the underlying relationship between the

muscle’s contractile activity and force output.

Alternatively, the relationship between neural discharge and in-

tended movements could be labile. Changes in task-related activation

patterns could thus result not only from changes in the values of a given

set of motor parameters but also because of a more fundamental

change in the relationship of a neuron to motor output. This could

result from task-dependent changes in the movement parameters

signaled by synaptic inputs, as well as from changes in how the

neuron’s output signal is processed by subsequent neural circuits. This

is theoretically possible in a redundant network in which there are

orders of magnitude more neurons than output variables to control.

Experimentally, the further removed a neuron is from direct

sensory inputs or from the final motor output, the more difficult it is

to establish a causal link between neural activity and motor behavior

and thus to distinguish between these two possibilities [22,103,125].

This limits our ability to determine the origin and functional

implications of adaptation-related changes in the activation patterns

of cortical neurons during overt arm movements. By contrast, the BCI

decoder explicitly defines the causal relationship between neural

activity and effector motions, thereby making it possible to investi-

gate directly the origin and functional implications of adaptation-

related response changes.
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Figure 2. Behavioral [29,30] and neural [74] evidence for adaptation to a novel dynamic environment. (a) Subjects hold the handle of a robot arm and make reaching

movements between targets viewed on a computer screen. The robot either imposes no force during reaching (null field) or (b) perturbs the arm trajectory by imposing forces on

the hand whose direction and amplitude are related to the velocity with which the hand moves. Hand trajectories for movements in the null field (c) are typically straight but

these trajectories are perturbed during initial movements made in a saddle force field (d). After continued practise in the force field the subject adapts to the novel dynamic

environment and trajectories straighten again (e). After adaptation, if the saddle field is unexpectedly removed in random ‘catch’ trials (f) during a block of force-field trials, the

trajectories are approximately the mirror image of the perturbed trajectories when the subject initially encounters the field (d). This indicates that the subjects have learned to

generate altered patterns of muscle activity appropriate to compensate for the external force field but no longer appropriate for movements in the null-field. Neurons recorded in

the primary motor cortex (M1) of monkeys while they adapt to a clockwise (CW) curl force field (g) show a range of changes in their movement direction-related activation

patterns that are consistent with a role for M1 in encoding learning-related changes in motor commands. These include: (i) neurons that showed no change in activation pattern

at any time during adaptation or washout (top); (ii) neurons that showed task-related changes in activation patterns similar to those of muscles, including a CW shift in the

preferred direction (red line) of their activation pattern (blue lines) after adaptation to the CW curl field and then a counter-clockwise (CCW) shift back to their baseline pattern

after washout (middle); and (iii) neurons that showed a CW shift of activation pattern during adaptation but did not revert back to their baseline activity during washout (bottom),

or did not shift during adaptation but showed a CCW shift during washout (not shown). These latter types of neurons behaved as if they retained a memory of each learning

episode. Figures reproduced, with permission, from [35] (panel a), [30] (panels b, c, d and f), [29] (panel e) and [74] (panel g).
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Skill generalization is limited presumably because the
set of synaptic inputs adapted during learning contribute
most to movements made in directions or postures similar
to those in which the learning took place, but progres-
sively less for increasingly different directions and pos-
tures.

However, trying to learn two conflicting skills in rapid
succession, such as adaptation to opposite directions of
forces or visuomotor rotations, can cause interference. This
results in diminished retention of the first skill (retrograde
interference) and/or impeded learning of the second skill
(anterograde interference) [58–64]. The interference pre-
sumably occurs because the two skills require opposite
adaptive changes to similar sets of synapses, causing their
64
effects to cancel out. Interference decreases gradually
when conflicting skills are learned in increasingly different
directions or postures [29,30,65–68], presumably because
of reduced overlap in the sets of synapses which adapt to
learn each skill. Studies also suggest that multi-skill
learning could be facilitated and interference reduced if
IMs had an internal modular structure in which different
subpopulations of neurons are preferentially activated and
modulated in different task conditions [27,69,70]. This
selection process could be determined in part by context
cues that could range from motor parameters such as
movement direction and limb posture to more cognitive
cues such as tool identity or even arbitrary colors
[50,52,64,67,71–73].
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Neurophysiological studies of motor adaptation

Compared to the wealth of behavioral studies, there have
been relatively few single-neuron studies of the adaptation
process during reaching movements. Nevertheless, they
support the link between neural response properties and
motor adaptation inferred by theoretical and behavioral
studies.

For instance, neurons in the primarymotor cortex (M1)
and premotor cortex (PM) were recorded in a few studies
while monkeys adapted to a viscous–curl force field (Glos-
sary) and then re-adapted (‘washout’) to baseline condi-
tions (Figure 2g) [74–79]. Some neurons showed apparent
rotations in their directional activation patterns during
adaptation and washout that resembled the changes in
muscle activation patterns required to compensate for the
force field (Figure 2g, ‘muscle-like change’) [74–77,80].
This implicated those neurons in representing the altered
inverse-dynamics transformation underlying curl-field
adaptation. Other neurons showed little activity change
during the adaptation–washout cycle (Figure 2g, ‘no
change’). Still others showed activation changes that,
unlike muscles, occurred only during adaptation or wash-
out, but not both (Figure 2g, ‘memory of learning’) [74].
This diversity of response changes suggested that single
cortical neurons could reflect different aspects of the force-
field adaptation process to varying degrees [74–77]. How-
ever, it is unclear whether this diversity indicates the
existence of separate neural subpopulations with distinct
functional roles or simply reflects local ranges of
responses within a larger continuum of activation pat-
terns.

Neuronal activity was also recorded in M1 as monkeys
learned to reach in a direction rotated at an angle away
from the spatial location of a visual ‘target’ stimulus
[81,82]. Unlike during curl-field adaptation, the direction
of the peakmovement-related activation ofM1 neurons did
not rotate. However, as the monkeys learned the visuo-
motor dissociation, many M1 neurons whose preferred
movement direction matched the new reach direction sig-
naled by the visual stimulus began to discharge more
strongly during an instructed-delay period between visual
stimulus presentation and movement onset [81,82]. This
suggested that the adaptive changes primarily involved a
remapping of visual input about target location onto the
neurons whose preferred movement direction matched the
required rotated movement [81,82].

These findings confirm that motor adaptation involves
changes in the activation patterns of neurons in cortical
motor areas, and that the nature of the changes can reflect
differences in the sensorimotor transformations that must
adapt. We now examine whether BCI systems require
similar adaptive mechanisms, fundamentally different
processes, or no adaptive processes at all.

Brain–computer interfaces
BCI systems comprise four main components [1–7]: (i)
multi-electrode arrays to record brain activity, (ii) a ‘de-
coder’ algorithm that processes the activity to extract
control signals about the presumed motor intentions of
the BCI user, (iii) an effector to implement the desired
motor action extracted by the decoder, and (iv) sensory
feedback about the resulting effector action that closes the
control loop (Figure 1a).

Decoding the motor intentions of subjects from brain

activity

Acrucial componentof theBCI is thedecoder – the computer
algorithm that uses recorded brain activity to inferwhat the
subject wants the effector to do. Different sources of signals
about brainactivity canbe recordedwithprogressivelymore
invasive methods. These include magnetoencephalograms
(MEG) and electroencephalograms (EEG) recorded on the
scalp, electrocorticograms (ECoG) recorded on the dura, and
local field potentials (LFP) and single- or multi-neuron
spiking discharges recorded with intracortical microelec-
trodes. Each approach has its advantages and limitations
for long-term BCI use (for details, please refer to [1–

4,6,7,83,84]). Field potentials including MEG, EEG, ECoG
and LFP are extracellular signals that reflect the spatially-
summated postsynaptic currents and spiking discharge of
large neural populations. Subjects can learn to control BCI
systemswithfield potentials [83,84], and paralyzed subjects
have used them successfully to restore computer-based
communication and in other applications [2,10–13,83,84].
However, the relationship between intended motor output
and field potentials remains poorly characterized [85–88]
compared to that for neural spiking activity [22–26]. Be-
cause this review examines the causal neural mechanisms
by which subjects use BCI systems and compares them to
the mechanisms underlying overt arm movements, we will
focus the rest of our discussions on BCI systems that use
neural spiking activity.

Before subjects canuseaBCIsystemtocontrolaneffector
(BCI-control mode), the decoder must be calibrated to
recognize the specific pattern of neural activity that signals
each desired effector action. In experimental animals, the
activity used for calibration is usually recorded while they
perform overt arm movements to control an effector in a
learnedmotor task (arm-controlmode) [17–20,89–97]. How-
ever, paralyzed patients cannot move. Instead, activity to
calibrate the decoder is evoked by asking the patients to
think about moving their arm or to watch an effector as it
moves under computer control and to imagine they were
moving it in the sameway [14–16]. Decoders have also been
calibrated in monkeys using activity recorded while they
watch effector motions [21,98–100]. This activity could re-
flect a spontaneous covert rehearsal of the arm movements
the monkeys had learned to associate with the observed
effector actions, because they had prior experience with
overt arm control of the effectors in motor tasks [99–101].

Irrespective of how it is generated, the activity recorded
during calibration is used to parameterize algorithms that
describe how each neuron’s discharge varies with selected
motor parameters such as spatial position, direction and
speed [17–20,89–97]. Ideally, the decoder once calibrated
should be able to combine the movement-related informa-
tion extracted from neural activity to generate an output
signal about how the subject wants the effector to move.

The BCI as a novel motor-control environment

The human motor system is designed to control arm move-
ments via spinal motoneuron activity. When subjects try to
65
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use a BCI system, however, they face several unique chal-
lenges. The decoder and effector replace much of the motor
system and their arm. The subjects must control effector
motion via the activity of the cortical neurons recorded by
the decoder, and not via spinal motoneuron activity
(Figure 1). This could also reduce the effectiveness of many
cortical and subcortical circuits that normally contribute to
motor planning and to rapid corrections for errors during
arm movements. Although currently under development,
BCI systems cannot yet provide proprioceptive feedback of
effector motions [1–4]. Subjects can only make visual feed-
back-mediated voluntary corrections for effector motion
errors. Furthermore, the physical properties of the BCI
effector are very different from the arm, the effector that
the motor system has evolved to control [2,17,20,21,93].

The input–output characteristics of the decoder that
generates the control signals for the effector present fur-
ther challenges. Even after calibration, the decoder’s out-
put signal never perfectly replicates the overt arm
movements, observed effector motions or presumed motor
imagery that were used to calibrate it [14–17,19–21,95,98].
There is always a residual error in the decoder output that
can cause mistranslation of the subject’s motor intentions
into effector actions. This error results from several further
factors.

The first is a sampling bias in the input signals into the
decoder. Millions of neurons throughout the motor system
control different aspects of an intended movement. The
BCI electrodes sample a miniscule fraction of that popula-
tion at random, often in only one cortical area. The deco-
der’s effector control improves as the neural sample size
increases, but it always plateaus at a level well short of
perfect replication of the subject’s motor intentions
[16,17,20,95,98]. The decodermight not be able to interpret
those intentions fully because the many unobserved neu-
rons that contribute to arm control could express motor-
related information that is not signaled by the recorded
neurons.

Another factor is the choice of the motor parameters the
decoders extract from neural activity [16,90,95]. Most
decoders extract a signal about the instantaneous spatial
position or velocity of desired effector motion. However,
although the recorded activity could be statistically corre-
latedwith those parameters, the neuronsmight actually be
processing combinations of sensory, motor and cognitive
information that do not correspond to any single definable
parameter space [3,6,7,22,102–104]. Any component of the
activity of even strongly task-related neurons that is not
directly related to the parameters the decoder extracts
could cause the effector to deviate from its intended mo-
tion.

Finally, neural activation patterns could change from
decoder calibration to BCI control for reasons other than
adaptation. For instance, when the decoder is calibrated
during overt arm movements, the recorded activity is a
combination of feed-forward signals about intended actions
and sensory feedback about the actual state of the limb.
However, during BCI control, proprioceptive feedback is
absent if the limb does not move. Consequently, the decod-
er calibration established during armmovements might be
inappropriate in BCI-control mode.
66
To what extent must subjects learn to use a BCI system?

An ideal BCI system would allow users to control effector
motions by generating patterns of neural activity about
desired effector motions with little or no training, despite
the unique control environment it presents. However,
there is a wide diversity of reports of how readily subjects
acquire BCI control and to what degree effector control
improves with practice.

To control effector motions with MEG- or EEG-based
BCI systems, subjects must impose volitional control over
the amplitude of specific frequency bandwidths of their
MEG/EEG spectrum by modulating the activity of large
neural populations in different brain regions. Human sub-
jects usually need extensive training before they can mas-
ter this skill [2,10–13,83,84]. ECoG-based BCI control is
acquired more quickly, possibly because this requires con-
trol of more localized neural populations [12].

Compared to spatially-summated field potentials, the
spiking discharge patterns of single neurons provide a
more temporally and spatially precise expression of a
subject’s motor intentions and are a rich source of signals
about many parameters of intended movements [22–26].
Studies in which subjects used spike-based decoders have
usually reported some degree of effector control shortly
after decoder calibration [1–8,14–21,89–94]. Nevertheless,
initial control was often awkward [17–21]. For instance,
paralyzed human subjects can use M1 neural activity to
control effectors immediately after decoder calibration
[4,6,14–16]. The control was often somewhat clumsy and
improvement was limited across training sessions. How-
ever, the conditions in those studies might not have been
ideal for revealing the full potential for BCI control im-
provement because practice in each task was usually short
(e.g. 40–80 trials) and repeated sessions were often sepa-
rated by many days during which the subjects performed
other BCI tasks [14–16].

Experimental animals likewise often appear to switch
fairly seamlessly and quickly from arm-control to BCI-
control of effector motions when first presented with this
condition [1–8,17–21,89–94]. The significance of this seem-
ingly rapid acquisition of BCI control is difficult to inter-
pret in some studies [17–20,89,94] because, for a period of
time after the experimenter switched from arm-control to
BCI-control mode, the animals continued to produce arm
movements and associated neural activity resembling
those used to calibrate the decoder. Despite the ongoing
arm movements, effector control often deteriorated after
the initial switch. BCI control improved progressively
within and across sessions, during which time the animals
gradually stopped making overt limb movements [1–8,17–

21,89–94]. This suggested that the animals slowly acquired
the ability to control the effector by covert brain activity
alone (Box 2).

Finally, in the most demanding effector-control task to
date, monkeys gradually acquired BCI control of an arm-
like robot to reach out to food, grasp it and bring it to their
mouth [21]. Even though themonkeys had prior experience
with related tasks, they were unable to impose BCI control
over the robot when it was first presented. Instead, they
had to be guided through a series of intermediate steps
with computer assistance of robot motions over many



Box 2. How do experimental subjects stop moving their arm during BCI control?

When BCI decoders are calibrated while subjects perform overt arm

movements, studies often report that the subjects gradually and

spontaneously reduce or stop moving their arm after switching to

BCI-control mode, although some residual motions and muscle

contractions can still occur [4,17,18,20,21,89,94,105]. This phenomen-

on has been frequently reported but not well documented to date, nor

has the possible contribution of residual movements to the BCI-

related activity of recorded neurons been studied in detail. This might

be insightful, because the residual movements or muscle contractions

could be external signs of part of the subject’s solution for BCI control.

How a dissociation between cortical activity and overt movement

develops during BCI control is not understood [4]. Visual feedback

about discrepancies between observed effector motions and their

own intended and sensed arm movements could inform the subjects

that effector motions are no longer directly coupled to their arm

movements. This could be accelerated if the neural activation patterns

required to produce the desired effector motions correspond to

unusual or physically impossible contortions of the arm. This could

also reflect a gradual recognition by the experimental animals that

they are in a highly unnatural situation in which they can control the

actions of an effector by generating covert brain activity about motor

intentions, but without making overt arm movements or interacting

physically with the effector. By contrast, this knowledge can be

quickly transmitted to human subjects by simple verbal instructions.

As a result, as the subjects acquire BCI control, they might gradually

stop generating the cortical activity responsible for the descending

motor commands that evoke movements and only generate central

neural activity implicated in putative higher-order planning pro-

cesses, similar to the activity recorded during the delay periods of

instructed-delay tasks. One might expect that this transition to covert

mental rehearsal of motor intentions would lead to decreased activity

in neurons that are normally associated with movement execution,

such as those in M1. However, although some studies have reported a

net decrease in M1 activity during BCI control [17,89] others have

reported the opposite trend [20,94]. Alternatively, subjects could

continue to generate cortical activity that is normally associated with

overt arm movements. This would require a mechanism to actively

suppress the arm movements that would otherwise result, as occurs

during rapid eye movement (REM) sleep [89,99,126,127]. Further

understanding of how subjects stop making overt arm movements

while exerting covert BCI control of effectors could also yield new

insight into how subjects normally initiate voluntary movements or

transition from a state of motor readiness to overt action, processes

that are still not fully understood.
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training sessions before they could perform this neuropros-
thetic feeding task with a reasonable degree of success.

Several factors probably contribute to the diversity of
findings about the speed of acquisition and degree of
improvement of BCI control across studies. These include
different neural sample sizes and cortical areas in which
neurons were recorded [17–20,90,92,94], differences in
decoder extraction algorithms [14–21,89–98], task
demands [21], degrees of prior training and familiarity
of experimental animals with behavioral tasks, and even
differences in the criteria used to assess performance.
Another key issue in animal studies is the degree to which
improved BCI control reflects adaptation to the properties
of the BCI system versus non-motor processes associated
with the animals’ progressive recognition that they are in a
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with a decoder that controls cursor position does not result
in improved control with a cursor-velocity decoder [17].

BCI control in experimental animals is also an example
of multi-skill learning. The animals spend most of the day
outside of the lab using their arm in normal behavior. In
the lab, they become increasingly adept at switching be-
tween arm-control and BCI-control modes, with progres-
sively less retrograde and anterograde interference at each
transition [17,20,89,105]. This could reflect both improved
control of the activity of the neurons recorded by the
decoder, as well as greater familiarity of the animals with
the unnatural context of covert BCI control of effectors via
cortical neural activity without overt arm movement.

Neural response changes during BCI control

Studies in experimental animals have reported widely di-
verse changes in the activation patterns of neurons between
arm-control and BCI-control modes. Although not always
well documented, the time-course of response changes re-
portedly parallels the improvement in BCI control, suggest-
ing that subjects must activate the neurons in new ways to
produce thedesired effector actions [16,17,20,89,90,105,106]
(Figures 3,4). This includes changes in task-related variance
of activity [94] and in mean discharge rate and depth of
modulation of activity, to the extreme that some neurons
eventually discharge only during arm-control orBCI-control
mode but not both [16,17,89] (Figure 4).

Some of themost striking changes involve the directional
tuning of neural activation patterns [14–17,19–

21,89,90,92,94,105]. The reported changes vary substantial-
ly across studies, ranging from uncorrelated shifts between
neurons [20] (Figure 4d) to systematic rotations across
populations [106], or even convergence of neural activation
patterns onto similar directional preferences [17,89]
(Figure 4f). This perplexing diversity of results could reflect
many factors, including differences in tasks, size and loca-
tion of recorded neural populations, decoder algorithms and
the motion parameters they extract, and even the methods
used to define directional tuning [14–23,89,90] and the time
range over which the neural activity is sampled [104,107].

This lack of consensus about response changes between
arm-control and BCI-control modes must be resolved be-
fore we can gain more insight into the neural mechanisms
by which subjects use BCI systems. Why do some studies
report seemingly random directionality changes [16,20,98]
whereas others find highly correlated convergent direction-
al changes across neurons [17,89]? How can such disparate
changes both apparently result in improved BCI-control
performance? Do they reflect similar or different adaptive
processes, or even different cognitive strategies to impose
volitional BCI control over effector motions? The answers
to these questions will help to clarify the extent to which
the activity changes are causal for BCI performance or are
merely secondary consequences of BCI control.

The BCI decoder provides a unique tool to study motor

control and adaptation

The neural mechanisms underlying the control and adap-
tation of overt arm movements are also not fully under-
stood, in part because the causal relationship between
cortical neural activity and the resulting movement is
68
almost always indirect and difficult to establish
[5,22,23,102,103]. By contrast, BCI decoders exactly define
the relationship between the activity of recorded neurons
and effector motions, and permit direct experimental ma-
nipulation of that relationship. Two recent studies
[105,106] provide striking demonstrations of the potential
to exploit these features of BCI decoders to study motor
adaptation.

BCI studies typically recalibrate the decoder at the start
of each session because they assume that the population of
recorded neurons will tend to change over time due to
electrode isolation instability [1–7,14–21]. This confounds
long-term studies of skill acquisition. To avoid this prob-
lem, a recent study [105] selected a small subset of 10–15
M1 neurons that could be stably recorded over many days,
and used only their activity to calibrate a decoder while
monkeys made overt arm movements to control cursor
motions on a monitor. The decoder parameters were then
fixed for the rest of the multi-day experiment. When the
task was switched to BCI-control mode, performance was
initially poor, in part because of the fairly demanding
nature of the task [105]. However, it improved progres-
sively within and across the first three to eight daily
sessions with the fixed decoder (Figure 3a,b). In parallel,
differences in the neural activation patterns between arm-
control and BCI-control modes increased gradually over
the first sessions and stabilized once BCI control reached a
plateau, until the end of the experiment (9–19 days) [105]
(Figure 3c,d). At that point, the monkeys could switch
between arm-control and BCI-control modes in one to two
trials with no interference.

To further study multi-skill learning, monkeys were
presented with both the original decoder, with which they
now had extensive practise, and a new decoder in which
there were significant changes in the mapping between
neural activity and effector motions [105]. The two deco-
ders were presented in alternating blocks of trials signaled
by different color-context cues on the computer monitor.
The animals became increasingly skilled at effector control
with the new decoder across days of practice while retain-
ing good control with the original decoder (Figure 5). In
parallel, the monkeys developed a new set of activation
patterns of the same stably-isolated neurons when using
the new decoder that differed both from that for the origi-
nal decoder and that during overt arm control. Those
‘prosthetic motor maps’ [105] became stable, readily
recalled, and resistant to interference from each other
when the subjects switched between decoders or between
arm-control and BCI-control modes. The emergence of
distinct stable prosthetic motor maps during decoder ad-
aptation might be one neural correlate of the acquisition
and consolidation of multiple motor skills [27,69,70]. Cru-
cially, the stable maps only emerged if the parameters in
each decoder and the set of recorded neurons remained
fixed, allowing the subjects to retain themaximum amount
of acquired skill across days.

These findings in carefully controlled conditions provide
strong evidence that BCI control can improve with practice
and involves changes in neural activation patterns. They
also suggest that long-term BCI users could become skilled
at generating distinct sets of activation patterns of the
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Figure 4. Neural responses exhibit a broad range of directional tuning changes during brain- versus arm-control. (a,b,c) Examples of the activities of three M1 cells recorded in a

monkey when movement of a robotic arm was controlled using either arm (‘pole’) control, brain control accompanied by arm movements, or by pure brain control [89]. Polar

plots illustrate neural activation patterns as a function of direction and magnitude of velocity with warm colors representing higher activity. Neural activity is plotted at different

times before (negative lags) and after (positive lags) the time at which an instantaneous velocity measurement (IVM) was made. Tuning during brain control with arm

movements was calculated relative to either robot (cursor) or hand movement velocity. (a) A neuron whose activity preceding the current IVM shows a fairly constant activation

pattern between arm-control and brain-control modes but whose activity recorded after the current IVM shows a shift in activation pattern across control modes. (b) A neuron

that was preferentially activated during arm-control but not brain-control mode. (c) A neuron that became preferentially modulated during brain-control compared to arm-

control mode. (d) Illustration of large and random variability in the changes in directional tuning of the activation patterns of neurons recorded from a monkey during arm versus

brain control [20]. Each line denotes the shift in the preferred direction of activation for an M1 neuron during arm-control (unmarked line end) versus brain-control mode (circles).

Activation changes are projected onto a unit sphere. (e) Change across daily training sessions in the mean difference in preferred direction during arm- versus brain-control

(mean angle; thick lines) for all M1 cells significantly tuned during both arm- and brain-control modes [20]. Black, contralateral; grey, ipsilateral M1 relative to the arm that moved

during the hand-control task. (f) Distributions of directional tuning curves of a population of monkey motor cortex neurons at different stages in the acquisition of BCI control

without arm movements [17]. Each color-coded horizontal line represents the tuning curve of a single neuron, with its preferred movement direction indicated by warm colors.

Initially, directional preferences were widely distributed across the population (i) but as the animal continued to practice BCI control and performance improved (ii–iv) the tuning

functions of the neurons shifted to converge into the quadrant between 270–3608. Panels a–c reproduced with permission from [89]. Panels d–e from [20]; reproduced with

permission from the American Association for the Advancement of Science. Panel f reproduced with permission from [17].
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Figure 5. Acquisition and simultaneous retention of two BCI-control ‘prosthetic motor maps’ for two different neural decoders [105]. (a) Changes in performance of a

monkey were measured by the percentage of trials in which the monkey was able to control cursor motion well enough to move it to a target within 10 s. Performance

changes are illustrated over four days when a new decoder (DecoderNEW) was introduced on day one after BCI control had already been learned over the course of 19 days

with DecoderOLD. By the fourth day, performance with DecoderNEW was as good as that with DecoderOLD, illustrating the ability of the animal to successfully use – and

switch quickly between – two distinct decoders. Left, moving average of performance during each session; right, mean session performance. (b) Directional activation

patterns (left) and neural spike waveforms (right) from three different stably-isolated neurons (i–iii) while performing brain control of cursor motions with the two decoders

(DecoderNEW, red; DecoderOLD, blue). Directional activation patterns during BCI control often changed when switching between the two decoders, illustrating that each

decoder invoked a unique ensemble of directional activation patterns (‘prosthetic motor maps’). Figure reproduced with permission from [105].
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same neurons that would allow them to switch readily
between motor tasks and to use different effectors that
require unique decoders. This is crucial for the flexibility
and ease of use of BCI systems in a clinical setting.

Another recent study also used decoders as tools to
study adaptation by creating perturbations at the single-
neuron level [106].Monkeys first learned to useM1 activity
to move a cursor to targets in a virtual 3D visual space in
BCI-control mode. They were then confronted with a novel
visuomotor dissociation created by choosing a random
subset of the recorded neurons and rotating the decoder’s
mapping of their directional activation patterns onto 3D
cursor motions by 908. When the monkeys first used the
altered decoder the cursor moved at an angle to the
intended direction. However, after many trials of practice
the monkeys could compensate partially for the rotation so
that the cursor moved more directly towards the target. As
adaptation progressed, neural activity showed a gradual
shift from delayed feedback-mediated responses (to correct
for observed cursor motion errors) to more predictive feed-
forward response changes before cursor motion onset.

The directionality and depth of modulation of single-
neuron activity changed after practice with the altered
decoder [106]. There was a small net counter-rotation of
the directional activation patterns of the entire population,
consistent with a global strategy of re-aiming the intended
cursor motion towards a virtual target in the direction
opposite to the perturbed cursor motion. However, the most
novel findings were that the degree of counter-rotation was
larger and the depth of discharge modulation was reduced
for those neuronswhose decodermapping had been altered,
compared to the non-rotated neurons. Those differential
trends suggested a credit assignment process that identified
and selectively altered how the motor system activated the
70
neurons whose decoder mapping had been rotated [106]. It
preferentially enhanced the compensatory counter-rotation
of their activation pattern (re-mapping) while simulta-
neously reducing their perturbing impact on cursormotions
by decreasing their overall activation (re-weighting).

One limitation of this study [106] was that the monkeys
only compensated for about 25% of the applied rotation
during each session, and the neural changes were corre-
spondingly small. Nevertheless, the insights provided by
both of these studies [105,106] were possible because the
decoder provided exact knowledge about the effect of each
neuron’s activity on cursor motions before, during, and
after adaptation. Thus, this approach shows great promise
for studying neural mechanisms of motor learning.

Some other unresolved issues
Several issues must still be resolved before we can under-
stand how subjects impose BCI control of effectors. By
providing the ability to define and control the relationship
between neural activity and motor output, BCI technology
provides unique tools to examine these issues and to
provide novel insights into motor-skill acquisition during
overt arm movements.

Which observed changes in neural activation patterns

are adaptive and learned?

One cannot assume that all observed changes in neural
activation patterns during BCI use contribute equally to
BCI control or reflect learning processes. For instance, some
BCI studies used adaptive decoderswhose parameterswere
updated periodically [16,19,20,108,109]. To what degree
BCI control in those studies resulted from changes in neural
activity versus changes inhow thedecoder transformed that
activity into effector actions is unclear.
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Furthermore, some decoders assign both tuning param-
eters and aweight to each neuron, and these determine how
much itsactivity contributes to effectormotion [17,90,95,98].
As a result, small activity changes in a heavily-weighted
neuron couldmake a larger contribution to BCI control than
larger changes in a weakly-weighted neuron, and some
changes might even be detrimental [90,95,98]. The extent
to which a given neuron’s activity change contributes to
changes in effector control is readily available from the
decoderbut,witha fewexceptions [98,105,106], studieshave
largely not exploited this information.

Reported activity changes could also result from unde-
tected changes in the population of recorded neurons
across time because of isolation instability, or a time-
dependent stochastic drift in neural response properties
unrelated to any learning process [3,108–112]. Changes in
the cognitive state of the subject – such as a transition from
passive observation or covert motor imagery during initial
decoder calibration to attempts at volitional BCI control of
effector motions – could also alter neural responses [5,6].

Finally, activation patterns could change as a result of a
decrease or loss of proprioceptive feedback about arm
posture and movement after switching from arm- to
BCI-control mode. Intriguingly, the loss of joint/muscle-
centred proprioceptive signals might actually facilitate
BCI control. Centrally-generated motor activity might
provide information primarily about extrinsic spatial
parameters of intended effector actions [113–115] that is
more compatible with the motor-output parameters
extracted by most decoders.

How do subjects adapt to a BCI system?

An issue that has rarely been examined in detail [106] is
the degree to which BCI-control improvement results from
adaptive changes in feed-forward processes versus more
efficient use of visual feedback. Equally unclear is whether
the motor system treats BCI-control mode primarily as a
change in the kinematic transformation from visual inputs
to desired motions, or treats the decoder and effector as a
surrogate arm or a novel environment with new dynamic
properties that require a new dynamics transformation
between desired effector actions andmotor commands. The
apparent rotations of activation patterns of many neurons
between arm-control and BCI-control modes [14–17,19–

21,89,90,92,94] are reminiscent of the rotations seen dur-
ing adaptation of arm movements to external curl-force
fields [74–77,79,112] but not during adaptation to visuo-
motor rotations [81,82]. This could indicate that the motor
system’s response to the BCI system more closely resem-
bles that due to a change in the physical properties of the
arm or the environment than to a change in the mapping
between visual input and effectormotions. This could occur
because, during BCI control, the activity of the recorded
neurons is directly causal to effector motions via the de-
coder, in the same way as forces, muscle contractions and
associated neural activity are causal to overt arm move-
ments. However, this highly speculative interpretation
presupposes that the motor system implements BCI con-
trol by performing the same basic computations as during
overt arm control [1–8,14–21]. Other very different pro-
cesses might also contribute, including mechanisms that
permit direct volitional control of neural activity
[5,8,116,117].

A related question is to what degree BCI control involves
volitional processes to seek a solution versus more subcon-
scious error-driven mechanisms [106]. Subjects learning
operant control of the activity of single M1 neurons often
start by searching through their naturalmotor repertoire to
find an action that produces the required neural activity
[8,116,117]. Subjects could use a similar approach when
they first switch from arm-control to BCI-control mode.
Aided by visual feedback about effector motion errors, sub-
jects could generate diverse patterns of neural activity
associated with different arm movements or combinations
of muscle contractions to find one which results in the
desired effector motions, not unlike a golfer who contorts
his body to try to will the flight of a badly slicing ball back
onto the fairway.

However, the incremental nature of improved BCI con-
trol also implicates error-driven adaptive processes such as
those associated with adaptation of overt arm movements.
Thismight involvea credit-assignmentprocess todetermine
the nature and source of the performance errors and to
identify the neural populations whose activation patterns
should be altered [50,52,106]. Different patterns of activity
changes could also indicate the existence of distinct func-
tional subpopulations with specific roles in adaptation that
might be subject to different adaptive mechanisms [74–77].

Alternatively, however, recentmodeling studies suggest
that the diverse adaptation-related activation changes
could result from a single learning mechanism applied
uniformly across a highly redundant neural population
[112,118]. Whenever a change is encountered, such as a
force field or a BCI system, the learning mechanism drives
the neural population towards a new functional state that
is expressed as a new task-dependent set of neural activa-
tion patterns, by progressive adjustment of synaptic con-
nection strengths. Different patterns of activation changes
suggestive of different functional subclasses of neurons
[74–77] or different adaptive processes [106] could simply
be epiphenomena that emerge from the unique history of
stochastic trial-to-trial variability of each neuron’s dis-
charge and error-driven versus noise-driven changes in
synaptic weights during adaptation [112,118]. These in-
triguing ideas await further experimental verification.
Even the degree of inherent stability of the M1 motor
map while interacting with a stable world is still contro-
versial [108–112]. BCI technology offers a unique experi-
mental tool to examine these important issues.

What is the contribution of all the neurons not used

by the BCI decoder?

When the activity of a local population of neurons in
M1 [14–17,19–21,89,90,94,105] or other cortical areas
[17,89,90,92,94,96] is used by a decoder to control an effec-
tor, their activation patterns often appear to change. Nor-
mally, however, neurons throughout the distributed cortical
and subcortical motor system all contribute to the control of
overt armmovements [27,39,69,70,74,75,77,81,119,120]. To
what degree do the activation patterns of themany neurons
not used by the decoder also change and contribute indirect-
ly to BCI control?
71
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For example, visual feedback is crucial for BCI control.
Preliminary evidence shows that when humans begin to
use BCI systems, M1 neural activity used by a decoder
signals both the intended effector motion and the current
visual error between desired and actual motion [14–16].
However, M1 does not receive direct visual inputs. The
visual input must be processed elsewhere, including the
parietal cortex, which influences M1 activity via cortico-
cortical projections [24,25,91,121,122]. This suggests that
visual error-driven activation changes could also occur in
the parietal cortex [39,91] and contribute to the altered
activation patterns of the M1 neurons used by the decoder.
Similarly, concurrent activation changes in the premotor
cortex and cerebellum could contribute to improved control
of effector spatial motion [113–115] and to adaptation to its
dynamic properties [27,69,70], respectively.

BCI technology could be used to study this issue. For
example, electrode arrays could be implanted in M1 and
other cortical and subcortical structures. Neurons in only
one structure such as M1 would be used for BCI control.
Neural activity could then be recorded in all the structures
while subjects practice BCI control of a variety of effectors
with different kinematic or dynamic properties. Studying
whether and how the activation patterns of neurons not
directly used by the decoder change could provide unique
insights into the contribution of each structure to BCI
control, as well as to overt motor control.

Can BCI control ever be as good as overt arm control?

No BCI user to date has consistently achieved the level of
precision, speed, and flexibility of effector control seen dur-
ing overt arm movements. The reduced nature of the BCI
neural control circuitry, neural sampling biases, non-opti-
mal decoder algorithms, frequent decoder recalibration and
other factors could all impose limits on the level of skill that
can be acquired and retained with current BCI technology.

Furthermore, most decoders generate a continuous time-
varying output signal to control the moment-to-moment
details of the desired effector actions. However, centrally-
generated feed-forward signals about intended arm or effec-
tor movements could normally provide only fairly general
information about the desiredmovement such as its overall
direction and endpoint [96,123]. The signals that control the
details of the trajectory might emerge primarily during the
movement through interactions between these feed-forward
processes and feedback about current limb state, and could
involve neural populations that are synaptically down-
stream of the recorded neurons.

Finally, the recorded neurons are embedded in a corti-
cal network whose functional architecture evolved to con-
trol the subject’s arm. This synaptic architecture could
impose constraints that limit the ability of each neuron to
assume any random activation pattern and so limit the
ability of subjects to acquire the perfect BCI prosthetic
motor map.

Nevertheless, a recent preliminary report described BCI
control that approached the speed and accuracy of able-
bodied subjects after only minutes of practice by using a
novel correction algorithm to identify errors in decoder
output signals and redefine how the decodermapped neural
activation patterns into effector motions [124]. This gives
72
reason to be optimistic that BCI technology can be refined to
the point where subjects can use it efficiently to produce
well-controlled effectormotions for extended periods of time
with minimal concentration, fatigue or frustration.

Do human subjects and experimental animals acquire

BCI control differently?

Experimental animals gradually acquire covert BCI-con-
trol of remote effectors by trial and error, usually after
extensive training in similar tasks using overt arm-control.
In contrast, the brain activity needed to calibrate a decoder
for paralyzed human subjects can be generated simply by
asking them to observe and imagine making effector move-
ments. They can then be asked to use similar motor
imagery to impose volitional BCI-control on the effector’s
motions. In theory, the subjects should be able to immedi-
ately control the effector by reproducing the same neural
activation patterns during BCI-control as during decoder
calibration, without any learning. Pilot clinical studies
have indeed shown that human subjects can exert a rea-
sonable degree of effector control right after decoder cali-
bration [14–16]. However, the ability to consistently recall
and replicate the same sets of neural activation patterns is
itself a skill that should improve with practice. Further-
more, the initial imagery-evoked activity might not be
adequate to produce the desired effector motions, for many
of the reasons discussed here, so human subjects may have
to learn how to use visual feedback efficiently to improve
closed-loop BCI-control. More studies are required to un-
derstand whether and how human subjects might have to
learn efficient BCI-control, how this might differ from
experimental animals, and what impact this has on causal
neural mechanisms.

Conclusions
The role of the motor system is to accomplish behavioral
goals ofbenefit to the individual.Themotorsystemnormally
achieves these goals by controlling the skeletomuscular
system, including the arm and hand. During adaptation
of arm movements to visuomotor dissociations or force
fields, the nature of the motor output needed to achieve
the goal changes, and this leads to changes in the neural
signals generated in cerebral cortical motor areas. By con-
trast, the means of implementing the desired goal also
changes when subjects use a BCI system to control a remote
effector. The challenges confronting a subject when they
begin to use a BCI system are complex and multiple. They
include neural sampling biases, potentially suboptimal de-
coder algorithms, differences in the dynamic properties of
the arm versus effectors, alteration or loss of sensory feed-
back signals, changes in the nature of the sensorimotor
transformations required to generate appropriate motor
outputs, and even changes in the definition of the desired
goal state when using a remote effector instead of the arm.
Further studies with BCI technology will provide a deeper
understanding of how the motor system responds to these
challenges, leading to improvements in BCI design and
performance. At the same time, BCI technology offers
unique opportunities to study the general principles and
neural mechanisms underlying skill learning during overt
arm movements.
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